首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   1篇
  国内免费   1篇
安全科学   12篇
废物处理   22篇
环保管理   3篇
综合类   6篇
基础理论   11篇
污染及防治   49篇
评价与监测   14篇
  2022年   3篇
  2021年   2篇
  2019年   5篇
  2018年   1篇
  2017年   7篇
  2016年   4篇
  2015年   5篇
  2014年   6篇
  2013年   6篇
  2012年   6篇
  2011年   9篇
  2010年   5篇
  2009年   7篇
  2008年   8篇
  2007年   8篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   7篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
101.
Toxicity potentials are scaling factors used in life cycle assessment (LCA) indicating their relative importance in terms of potential toxic impacts. This paper presents the results of an uncertainty assessment of toxicity potentials for 181 substances that were calculated with the global nested multi-media fate, exposure and effects model USES-LCA. The variance in toxicity potentials resulting from choices in the modelling procedure was quantified by means of scenario analysis. A first scenario analysis showed to what extent potential impacts in the relatively short term are obscured by the inclusion of impacts on the very long term. Toxicity potentials representing potential impacts over time horizons of 20, 100 and 500 years were compared with toxicity potentials representing potential impacts over an infinite time horizon. Time horizon dependent differences up to 6.5 orders of magnitude were found for metal toxicity potentials, while for toxicity potentials of organic substances under study, differences remain within 0.5 orders of magnitude. The second scenario analysis addressed to what extent potential impacts on the continental scale are obscured by the inclusion of impacts on the global scale. Exclusion of potential impacts on the global scale changed the toxicity potentials of metals and volatile persistent halogenated organics up to 2.3 orders of magnitude. These scenario analyses also provide the basis for determining exports to future generations and outside the emission area.  相似文献   
102.
When a recombinantEscherichia coli XL1-Blue harboring pSYL105 was cultured in a complex medium, a poly(3-hydroxybutyric acid) (PHB) concentration of 7.16 g/L was obtained in 48 h. However, a PHB concentration of only 0.91 g/L was obtained in 60 h by culturing in a defined medium. Also, fed-batch culture in a defined medium resulted in considerably lower PHB accumulation than in a complex medium. With the aim to produce a high concentration of PHB at a reduced medium cost, we examined 10 complex nitrogen sources for their ability to promote PHB synthesis in a defined medium. Tryptone, casamino acids, and casein hydrolysate promoted PHB synthesis to a higher extent than the others tested. PHB synthesis was also enhanced during fedbatch cultures when a defined medium was supplemented with various complex nitrogen sources. With tryptone supplementation a PHB concentration of 66.7 g/L could be obtained in 44 h. Yeast extract was less effective for promoting PHB synthesis than tryptone. Corn steep liquor, which did not enhance PHB synthesis significantly, could promote PHB synthesis considerably when supplemented together with yeast extract in both flask and fed-batch cultures.  相似文献   
103.
Building on strategic human resource management literature, this study investigates the effects of various human resource development (HRD) dimensions on organizational performance. We identify four distinct dimensions of HRD that reflect either quantitative or qualitative approaches from either managerial or employee perspectives. Furthermore, we propose that HRD affects organizational performance by shaping employee outcomes, a prevailing but rarely tested assumption. Multi‐source data collected from 207 manufacturing companies at three time points over a 5‐year period largely support our theoretical propositions. A series of structural path analyses confirm that HRD improves employee commitment and competence, which in turn determine the financial performance of the organization. The quantitative dimensions of HRD (resource investment in HRD) predict only employee commitment. By contrast, the qualitative dimensions of HRD (management support for, and perceived benefits of, HRD) enhance both employee commitment and competence. Our analysis also demonstrates synergistic interactions between the quantitative and qualitative dimensions of HRD in predicting employee outcomes. This study elaborates the distinct values of different dimensions of HRD and highlights the significance of employee outcomes as the mediating mechanism between HRD and firm performance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
104.
For investigating the relationship between thermal properties and biodegradability of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), several films of PHBV containing different polyhydroxyvalerate (HV) fractions were subjected to degradation in different conditions for up to 49 days. Differential scanning calorimetry (DSC), thermogravimetry (TG), specimen weight loss and scanning electron microscopy (SEM) were performed to characterize the thermal properties and enzymatic biodegradability of PHBV. The experimental results suggest that the degradation rates of PHBV films increase with decreasing crystallinity; the degradability of PHBV occurring from the surface is very significant under enzymatic hydrolysis; the crystallinity of PHBV decreased with the increase of HV fraction in PHBV; and no decrease in molecular weight was observed in the partially-degraded polymer.  相似文献   
105.
Previous studies have investigated the role of intrinsic motivation and extrinsic rewards in enhancing employee creativity. However, the possibility that these motivational factors affect the creativity of different types remains largely unexplored, particularly in the organizational settings. Moreover, the potential that personality traits may moderate the function of these motivational factors toward creativity is another underresearched area. By drawing on the person–situation interaction perspective, we propose that both intrinsic motivation and extrinsic rewards predict creativity but of different types. Thus, we diverge from the view that creativity is a uniform criterion domain by adopting the distinction between radical and incremental creativity. Our empirical analysis of 220 independent employee–supervisor dyads confirmed that intrinsic motivation and extrinsic rewards predict radical and incremental creativity, respectively. Moreover, the effects of intrinsic motivation on radical and incremental creativity are more positive for employees with higher learning goal orientation. By contrast, the effect of extrinsic rewards on incremental creativity is more positive for employees with higher performance goal orientation. This study offers elaborate and nuanced perspectives and insights into the role of different motivational processes in the development of different types of creativity.  相似文献   
106.
Environmental Geochemistry and Health - Improper decisions concerning animal carcass disposal sites pose grave threats to environmental biosecurity. However, only a few studies have focused on the...  相似文献   
107.
Food waste and sewage sludge are the most abundant and problematic organic wastes in any society. Mixture of these two wastes may provide appropriate substrate condition for dark fermentative biohydrogen production based on synergistic mutual benefits. This work evaluates continuous hydrogen production from the cosubstrate of food waste and sewage sludge to verify mechanisms of performance improvement in anaerobic sequencing batch reactors. Volatile solid concentration and mixing ratio of food waste and sludge were adjusted to 5 % and 80:20, respectively. Five different hydraulic retention times (HRT) of 36, 42, 48, 72, and 108 h were tested using anaerobic sequencing batch reactors to find out optimal operating condition. Results show that the best performance was achieved at HRT 72 h, where the hydrogen yield, the hydrogen production rate, and hydrogen content were 62.0 mL H2/g VS, 1.0 L H2/L/day, and ~50 %, respectively. Sufficient solid retention time (143 h) and proper loading rate (8.2 g COD/L/day as carbohydrate) at HRT 72h led to the enhanced performance with better hydrogen production showing appropriate n-butyrate/acetate (B/A) ratio of 2.6. Analytical result of terminal-restriction fragment length polymorphism revealed that specific peaks associated with Clostridium sp. and Bacillus sp. were strongly related to enhanced hydrogen production from the cosubstrate of food waste and sewage sludge.  相似文献   
108.
Current water quality standards for the protection of human health in Korea include 17 substances found in rivers and streams. Due to increasing concern over the release of hazardous chemicals into the aquatic environment, there has been a demand for additional water quality standards. Therefore, the Korean Ministry of the Environment plans to gradually increase the number of water quality standards to 30 substances, including 22 substances for protection of human health and 8 substances for protection of aquatic ecosystems by 2015. In this study, new water quality standards for protection of human health were established for 1,4-dioxane, formaldehyde, and hexachlorobenzene. We selected candidate hazardous chemicals, conducted a human health risk assessment to determine priority chemicals, established water quality standards based on technical analyses and comparison with domestic and developed countries’ water quality standards, and conducted an expert review. Water quality standards for protection of aquatic ecosystems will be derived in the near future. This study describes how the water quality standards for protection of human health were developed and implemented. Current status, recent expansion, and future plans for water quality standards in Korea are also covered.  相似文献   
109.
Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary metabolism of plants and the indirect impact on rhizosphere bacterial communities. We then compared the secondary metabolites of the hyperaccumulator Pteris vittata L. collected from a contaminated mining site to a non-contaminated site in Vietnam and identified the discriminant metabolites. Our data showed a significant increase in chlorogenic acid derivatives and A-type procyanidin in plant roots at the contaminated site. We hypothesized that the intensive production of these compounds could be part of the antioxidant defense mechanism in response to metals. In parallel, the structure and diversity of bulk soil and rhizosphere communities was studied using high-throughput sequencing. The results showed strong differences in bacterial composition, characterized by the dominance of Proteobacteria and Nitrospira in the contaminated bulk soil, and the enrichment of some potential human pathogens, i.e., Acinetobacter, Mycobacterium, and Cupriavidus in P. vittata’s rhizosphere at the mining site. Overall, metal pollution modified the production of P. vittata secondary metabolites and altered the diversity and structure of bacterial communities. Further investigations are needed to understand whether the plant recruits specific bacteria to adapt to metal stress.  相似文献   
110.
A study has been conducted to enhance degradation of a mixture of polycyclic aromatic hydrocarbons (PAHs) by combining biodegradation with hydrogen peroxide oxidation in a former manufactured gas plant (MGP) soil. An active bacterial consortium enriched from the MGP surface soil (0-2 m) biodegraded more than 90% of PAHs including 2-, 3-, and 4-ring hydrocarbons in a model soil. The consortium was also able to transform about 50% of 4- and 5-ring hydrocarbons in the MGP soil. As a chemical oxidant, Fenton's reagent (H2O2 + Fe2+) was very efficient in the destruction of a mixture of PAHs (i.e., naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), pyrene (PYR), chrysene (CHR), and benzo(a)pyrene (BaP)) in the model soil; noticeably, 84.5% and 96.7% of initial PYR and BaP were degraded, respectively. In the MGP soil, the same treatment destroyed more than 80% of 2- and 3-ring hydrocarbons and 20-40% of 4- and 5-ring compounds. However, the low pH requirement (pH 2-3) for optimum Fenton reaction made the process incompatible with biological treatment and posed potential hazards to the soil ecosystem where the reagent was used. In order to overcome such limitation, a modified Fenton-type reaction was performed at near neutral pH by using ferric ions and chelating agents such as catechol and gallic acid. By the combined treatment of the modified Fenton reaction and biodegradation, more than 98% of 2- or 3-ring hydrocarbons and between 70% and 85% of 4- or 5-ring compounds were degraded in the MGP soil, while maintaining its pH about 6-6.5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号